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Introduction. Often in physics we are interested in the holonomy of a state as we move

along a path Γ in some space M. Such a holonomy is typically governed by the path-ordered

exponential of a non-Abelian connection A over M,

U = P exp

(

i

∫

Γ

A

)

(1)

In this short note we study the restrictions on the connection A due to supersymmetry.

Specifically, we focus on situations where the coordinates xi over M can be thought of as

the bosonic components of a supermultiplet. In this case, the connection A = Ai(x)ẋ
i dt is

merely the leading order term in a Lagrangian,

L = Ai(x) ẋ
i + . . . (2)

where . . . denote terms involving fermions and auxiliary fields which form the supersym-

metric completion of the connection. There is something unfamiliar about Lagrangians of

this type: they are matrix-valued functions of scalar fields. This is to be contrasted with

the more familiar quantum mechanical matrix models, where the Lagrangian is a scalar

function of matrix-valued fields.

Below, we study the conditions for the matrix-valued Lagrangian L to be invariant

under N = (2, 2) supersymmetry (that is, the dimensional reduction of N = 1 supersym-

metry in 4d). We restrict our attention to scalar fields that live in chiral multiplets or

vector multiplets. When A is a function of complex, chiral multiplet scalars, we show that

supersymmetry restricts the connection to satisfy the tt* equations of [1, 2]. In contrast,

when A depends on the triplet of scalars that live in a vector multiplet, the connection A

is constrained to obey the Bogomolnyi monopole equation [3].

At the end of this paper, we present an application of these results to computing the

non-Abelian Berry phase in supersymmetric quantum mechanics. This was the original

context in which the tt* equations were first discovered [1] and the method of this paper

gives a particularly simple derivation. More recently, we have studied examples of quantum

mechanics in in which the Berry connection obeys the Bogomolnyi monopole equations [6,

7]. It was conjectured in [7] that the Bogomolnyi equations are, more generally, analogous

to the tt* equations for vector multiplet parameters. The results of this paper prove

this conjecture.

Recent related work has examined the Berry phases that arise in D-branes and super-

symmetric black holes [8 – 11]. We expect the results of this paper to be relevant to this

study. The methods here should also be applicable to systems exhibiting different amounts

of supersymmetry.

The invariance of a matrix. The first question that we have to answer is: what does

it mean for a matrix-valued Lagrangian L to be invariant under a symmetry? In the

familiar situation, where the Lagrangian is a scalar-valued function, a symmetry is any

transformation under which the Lagrangian changes by a total derivative,

δL =
dΘ

dt
(3)
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for some function Θ. However, as explained in [4], this is no longer the appropriate condition

when L is matrix-valued. The object of interest is now the time-ordered exponential,

U(ti, tf ) = T exp

(

i

∫ tf

ti

L(t) dt

)

(4)

For concreteness L is assumed to be a Hermitian N ×N matrix, but more generally can be

valued in any Lie algebra. Varying the Lagrangian results in a variation of the holonomy,

δU(tf , ti) = i

∫ tf

ti

U(ti, t) δL(t)U(t, tf ) dt (5)

If the Lagrangian changes by a total derivative, as in (3), the change in the holonomy has

no particularly special properties. Instead, a transformation is said to be a symmetry if

the integrand in (5) is a total derivative: d
dt

[U(ti, t)Θ(t)U(t, tf )]. This holds if δL is a total

covariant derivative,

δL =
dΘ

dt
+ i[L,Θ] (6)

Even when the variation is a symmetry, the holonomy U is not invariant. Rather, it

changes by

δU = iU(ti, tf )Θ(tf ) − iΘ(ti)U(ti, tf ) (7)

For cyclic paths, such that xi(ti) = xi(tf ), this means that δU = [U,Θ] which is the

requirement that the holonomy of the vector space V remains invariant up to a relabeling

of the basis vectors of V . (Alternatively, up to a gauge transformation). In the remainder

of this paper, we determine the constraints on Lagrangians L which transform as a total

covariant derivative (6) under N = (2, 2) supersymmetry.

Chiral multiplets and tt* equations. We first study connections A which are func-

tions of chiral multiplet parameters. The chiral multiplet consists of a complex scalar φ,

two complex Grassmann variables ψ+ and ψ−, and a complex auxiliary scalar F . The

supersymmetry transformations are,1

δφ = ψǫ

δψ± = Fǫ± − iφ̇ǭ± (8)

δF = −iǭψ̇

As a warm-up, we first construct a supersymmetric scalar-valued Lagrangian which starts

with a connection term linear in time derivatives. We assign engineering dimensions con-

sistent with the supersymmetry transformations: [φ] = 0, [λ] = 1/2, [F ] = [d/dt] = 1 and

1Our spinor conventions are those of [5], reduced to d = 0 + 1 dimensions. To orient the reader with

spinor contractions, it may help to recall that, in 4d, one can form a scalar ψλ and a 4-vector ψ̄σµλ from

two Weyl spinors ψ and λ. Upon dimensional reduction to d = 0 + 1 dimensions, these descend to two

scalars ψλ and ψ̄λ ≡ ψ̄σ0λ, and a triplet of scalars ψ̄~σλ.
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[ǫ] = −1/2. Then most general Lagrangian, at leading order in the derivative expansion,

is given by,

L = Aφ̇+A†φ̇† +GF +G†F −
1

2
Bψψ −

1

2
B†ψ̄ψ̄ + Cψ̄ψ + ~C · ψ̄~σψ (9)

Here A, G and B are complex function of φ and φ̄, while C is a real function and ~C is a

triplet of real functions. ~σ are the Pauli matrices.

We require that this Lagrangian is invariant under the supersymmetry transforma-

tions (8). A direct computation gives constraints on the functions appearing in L: they

must obey

∂G

∂φ†
= 0 , B =

∂G

∂φ
,

∂A

∂φ†
−
∂A†

∂φ
= 0 , C = ~C = 0 (10)

With these restrictions, the Lagrangian is supersymmetric, transforming by a total deriva-

tive, δL = Θ̇, where

Θ = Aψǫ− iGǭψ + h.c. (11)

Matrix valued lagrangians. We now repeat the calculation, but this time with the

Lagrangian (9) given by an N × N matrix. The functions A, G, B, C and ~C are corre-

spondingly promoted to N ×N matrices. Once more applying the supersymmetry trans-

formations (8), we insist that the Lagrangian transforms as a total covariant derivative (6),

with Θ given by (11). We find that this imposes the constraints ~C = 0 and,

D†G ≡
∂G

∂φ†
+ i[A†, G] = 0

B = DG ≡
∂G

∂φ
+ i[A,φ] (12)

C = [G†, G] = [D,D†]

These are the Hitchin equations [12] for the complex connection A and complex matrix

G. They arise as the double-dimensional reduction of the self-dual Yang-Mills equations.

In the presence context, they can be thought of as a special case of the tt* equations. To

derive the most general form of the tt* equations, we look at Lagrangians depending on

several chiral multiplets.

Multiple chiral multiplets. Consider multiple chiral multiplets, (φp, F p, ψp
±). The

most general action matrix-valued Lagrangian that we can write down is,

L = (Apφ̇
p +GpF

p −Bpqψ
pψq + h.c.) + Cpqψ̄

pψq + ~Cpq · ψ̄
p~σψq (13)

It is straightforward to vary this Lagrangian by the transformations (8). Supersymmetry

is assured if ~Cpq = 0 and

D†
pGq ≡

∂Gq

∂φp †
+ i[A†

p, Gq] = 0

DpGq = DqGp = Bpq +Bqp (14)

[Gp, Gq] = [Dp,Dq] = 0

Cpq = [G†
p, Gq] = [Dq,D

†
p]

– 3 –
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Here the covariant derivative is defined by Dp = ∂/∂φp + i[Ap, ·]. These are the general

form of the tt* equations of Cecotti and Vafa [1, 2]. The original derivation of these

equations came from studying the Berry connection in quantum mechanical systems; we

will review this application shortly. The derivation presented here, invoking the invariance

of a classical matrix Lagrangian, appears to be somewhat simpler.

Vector multiplets and Bogomolnyi equations. We now repeat the story for

holonomies which depend on vector multiplet parameters. In d = 0 + 1 dimensions, the

vector multiplet consists of a single gauge field a0, three real scalars mi, two complex

Grassmann variables λ±, and a real auxiliary field D. (The scalars mi can be thought of as

arising from the dimensional reduction of a vector field in d = 3 + 1). The supersymmetry

transformations are given by,

δa0 = iλ̄ǫ− iǭλ

δ ~m = iλ̄~σǫ− iǭ~σλ (15)

δλ = ~̇m · ~σǫ+ iDǫ

δD = − ˙̄λǫ− ǭλ̇

We again start by considering the restrictions of supersymmetry on a scalar Lagrangian

that starts with a connection term linear in time derivatives. In fact, this problem was

already solved by Denef in [13]. The most general form of the Lagrangian is given by,

L = ~A · ~̇m−HD +Bλλ+B†λ̄λ̄+ Cλ̄λ+ ~C · λ̄~σλ (16)

where ~A, H, C and ~C are real functions of ~m, while B is a complex function. A direct

computation [13] shows that the transformations (15) are a symmetry of this Lagrangian

providing B = C = 0 and

Ci =
∂H

∂mi
= ǫijk

∂Ak

∂mj
(17)

With these restrictions, the Lagrangian transforms by a total derivative, δL = Θ̇, where

Θ = Hλ̄ǫ+ i ~A · λ̄~σǫ+ h.c. (18)

Matrix valued lagrangians. We now repeat this calculation for the vector multiplet

Lagrangian (16), with the functions ~A, H, C, ~C, andB all promoted toN×N matrices. The

calculation is once again straightforward. Applying the supersymmetry transformations

(15), the Lagrangian transforms as a total covariant derivative (6), with Θ given by (18),

providing that B = C = 0 and,

Ci = DiH ≡
∂H

∂mi
+ i[Ai,H] =

1

2
ǫijkFjk (19)

where the non-Abelian field strength is given by Fij = ∂iAj − ∂jAi + i[Ai, Aj ]. These are

the Bogomolnyi monopole equations [3]. They arise as the dimensional reduction of the

self-dual Yang-Mills equations. It is noteworthy that, for both chiral and vector multiplets,

the constraints on the connections are related to the self-dual instanton equations.
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Multiple vector multiplets. Finally, we consider matrix-valued Lagrangians consisting

of multiple vector multiplets (ap
i , ~m

p,Dp, λp
±). The most general action takes the form,

L = ~Ap ~̇m
p −HpD

p + (Bpqλ
pλq + h.c.) + Cpqλ̄

pλq + ~Cpq · λ̄
p~σλq (20)

This time, supersymmetry requires B = 0 and,

Cpq = [Hp,Hq]

(Ci)pq =
∂Hq

∂mi
p

+ i[Ai
p,Hq] =

∂Hp

∂mi
q

+ i[Ai
q,Hp]

ǫijk(Ck)pq − i[Hp,Hq]δij =

(

∂Aj
p

∂mi
q

−
∂Ai

q

∂mj
p

+ i[Ai
q, A

j
p]

)

(21)

These equations are to vector multiplets what the tt* equations are to chiral multiplets.

An application: Berry phase. To end this paper, we describe an application of the

above results to the computation of the Berry phase in strongly coupled quantum mechan-

ical systems. Suppose that this quantum mechanics has N degenerate ground states | a〉,

a = 1, . . . , N , and let xi denote the parameters of the system. Then, as we adiabatically

vary the parameters, the ground states will undergo a non-Abelian Berry holonomy [14, 15]

given by (4), where the u(N) valued connection is

(Ai)ab = i〈b|
∂

∂xi
|a〉 . (22)

Typically, the only way to compute the Berry connection is to first construct the ground

states, and then use the direct definition (22). However, in supersymmetric quantum

mechanics, once can bypass this step. In many examples, this allows the Berry connection

to be computed exactly, even when the ground states cannot be. The key point is that the

parameters in supersymmetric theories themselves sit in supermultiplets. One can integrate

out the all dynamical fields to get an effective u(N)-valued Lagrangian for the parameters

of the form (2). This Lagrangian must itself be invariant under supersymmetry. We now

give some examples of this procedure.

Chiral multiplets. Consider a Wess-Zumino model in d = 0 + 1 dimensions. The

superpotential depends on the dynamical chiral multiplets, which we collectively call Y ,

and the complex parameters φ: W = W(Y ;φ).

Supersymmetric ground states are defined by ∂W/∂Y = 0. We are interested in how

the space of ground states varies as one changes the parameters φ. This is precisely the

information captured by the Berry connection (22). The requirement that the effective

action for the parameters φ is supersymmetric, ensures that the Berry connection must

satisfy the tt* equations (12). We need only understand the meaning of the complex matrix

G in the original quantum mechanics. Expanding out the superpotential, the auxiliary field

F — which is the superpartner of the parameter φ — appears in the quantum mechanical

Lagrangian as,
∫

d2θ W(Y ;φ) =
∂W

∂φ
F + . . . (23)

– 5 –
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F can be viewed as a source in the original quantum mechanics, such that differentiating

with respect to F computes the expectation value of ∂W/∂φ. Comparing with the effective

action (9) for the parameters, we see that

(G)ab = 〈b|
∂W

∂φ
|a〉 (24)

The tt* equations then relate the curvature of the Berry connection to this matrix element.

The result that the Berry phase in Wess-Zumino models obeys the tt* equations is

certainly not new; it was one of the main results of the original tt* papers [1, 2], where the

matrix elements (24) were interpreted as the coefficients of the chiral ring. Nonetheless,

the derivation given here, in terms of a non-Abelian effective action for the parameters,

appears to be novel.

Vector multiplets. There is a similar story for parameters which live in N = (2, 2)

vector multiplets. Consider a d = 0+1 supersymmetric sigma-model with dynamical fields

Y and ζ,

Lσ−model =
1

2
gmn(Y )Ẏ mẎ n + gmnζ̄

mDtζ
n +Rmnpq ζ̄

mζnζ̄pζq (25)

where Dtζ
n = ζ̇n +Γn

pqẎ
pζq. As is well known, N = (2, 2) supersymmetry requires the the

metric g is Kähler. If the metric admits a holomorphic Killing vector km, then one may

add a potential over the target space which depends on three parameters ~m,

Lpotential = |~m|2 k2 + gmnζ̄
m(~m · ~σ)ζn (26)

The parameters ~m live in a background vector multiplet.

The Witten index for this system guarantees the existence of at least Tr(−1)F = N

ground states, where N is the Euler character of the target space. (This statement is true

only for compact target spaces). We want to know the Berry connection (22) for these

grounds states as the parameters ~m are varied. We may again integrate out the dynamical

degrees of freedom Y and ζ, to leave ourselves with an effective action of the form (16).

The results above tells us that the Berry connection must satisfy the Bogomolnyi monopole

equation (19).

It remains to determine the matrix H that appears in the Bogomolnyi equation in

terms of the original dynamical variables Y . To do this, we must understand how D, the

auxiliary superpartner of ~m, couples to the system. This can be read off from [17]. There is

a term in the sigma-model Lagrangian proportional to µ(Y )D, where µ(Y ) is the moment

map associated to the Killing vector k. This is a function over the target space which

satisfies dµ = ıkω, where ω is the Kähler form. We therefore find that

Hab = 〈b|µ(Y )|a〉 (27)

In [6, 7], we studied the CP1 sigma-model and, by explicit computation, showed that

the Berry connection was given by the single SU(2) BPS monopole satisfying (19). We

– 6 –
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conjectured that the Berry phase for the CPN−1 sigma-model was the (1, 1, . . . , 1) BPS

monopole in SU(N) gauge theory. The results of this paper prove this conjecture.

Recently, it was proposed that Berry phases could be used to manipulate the mi-

crostates of supersymmetric black holes [10, 11]. The idea was to consider how the mi-

crostates of the black hole change as one varies expectation values for the asymptotic

scalars. These appear as parameters in the black hole quantum mechanics, and the Berry

connection can be shown to satisfy a modification of the tt* equations [10, 11]. In fact,

the non-Abelian monopole connections (21) also appear to be relevant in this context. The

scalars in the vector multiplet parameterize the separation of multi-centered black holes

in four-dimensions [13]. The non-Abelian monopole connections that we find in this pa-

per describe the holonomy of microstates as black holes orbit in the Born-Oppenheimer

approximation. It would be interesting to explore this connection further.
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